

Title: Technical / Sheet Glasses

Material/Specification: Schott B270 for 320-2600nm transmission

Range/Description: TSG-B270

+44 (0)1622 859444 info@knightoptical.co.uk www.knightoptical.com

B 270 Superwite

B 270 Superwite is a clear high transmission crown glass (modified soda-lime glass) available in form of sheets, optical rods, profiled rods, strips and chain moulded rod.

Optical properties

Refractive indices (20 °C)			
Pretreatment of samples	<i>n</i> g	1.5	53
annealed at 40 °C/h	n F⁻	1.5	53
	<i>n</i> F	1.5	53
	n e	1.5251 :	± 0.001*
	n a	1.	52
	<i>n</i> D	1.	52
* ± 0.0003 upon request	n c [,]	1.5	52
	<i>n</i> c	1.5	52
Further refractive indices in UV and IR (reference values)		see a	innex
Abbe value	<i>V</i> e	58.3 ± 0.6	
	<i>V</i> d	58	3.5
Transmittance data			
Spectral transmittance $ au$ (λ)			
$ au$ (λ) - curve			
Plot of spectral transmittance $\tau(\lambda)$ for $d=2.0$ mm and $d=15$ mm ($\lambda=280$ nm to 650 nm) $d=2.0$ mm and $d=15$ mm ($\lambda=280$ nm to 2000 nm)		see a	
$r(\lambda)$ - individual values in %		see annex	
Edge wavelength (d = 2.0 mm)			
Edge wavelength	$\lambda c (\tau = 0.46)$ in nm 312	312	
Additional data	$\lambda \text{s} (\tau = 0.05) \text{in nm } 294$	294 340	
	$\lambda_{P}(\tau = 0.85)$ in nm 340		
Luminous transmittance $ au_{ extsf{v}}$			
Luminous transmittance as a function of thickness			
	Thickness in mm	$ au_{ ext{ vD65}}$ in %	au va in %
	2	91.7	91.7
	4	91.6	91.6
	15	91	91

B 270 Superwite

B 270 Superwite is a clear high transmission crown glass (modified soda-lime glass) available in form of sheets, optical rods, profiled rods, strips and chain moulded rod.

Optical properties

Refractive indices (20 °C)			
Pretreatment of samples	<i>n</i> g	1.5	53
annealed at 40 °C/h	<i>n</i> F′	1.5	53
	<i>n</i> F	1.5	53
	n e	1.5251	£ 0.001*
	<i>n</i> d	1.5	52
	<i>n</i> D	1.9	52
* ± 0.0003 upon request	n c	1.9	52
	<i>n</i> c	1.9	52
Further refractive indices in UV and IR (reference values)		see a	nnex
Abbe value	<i>V</i> e	58.3	± 0.6
	<i>V</i> d	58	.5
Transmittance data			
Spectral transmittance $ au$ (λ)			
$ au$ (λ) - curve			
Plot of spectral transmittance $\tau(\lambda)$ for $d=2.0$ mm and $d=15$ mm ($\lambda=280$ nm to 650 nm) $d=2.0$ mm and $d=15$ mm ($\lambda=280$ nm to 2000 nm)		see a	
$r(\lambda)$ - individual values in %		see annex	
Edge wavelength (d = 2.0 mm)			
Edge wavelength	$\lambda \circ (\tau = 0.46)$ in nm 312	312	
Additional data	$\lambda s (\tau = 0.05)$ in nm 294	294	
	$\lambda_{P}(\tau = 0.85)$ in nm 340	34	10
Luminous transmittance $ au_{ extsf{v}}$			
Luminous transmittance as a function of thickness			
	Thickness in mm	τ vD65 in %	τ∨Ain %
	2	91.7	91.7
	4	91.6	91.6
	15	91	91

+44 (0)1622 859444 info@knightoptical.co.uk www.knightoptical.com KNIGHT OPTICAL

Special transmittance values in % (<i>d</i> = 2.0 mm)		
UV - transmittance	au UVA	84
	au uvb	19
IR - transmittance	$ au_A$	92.5
Solar direct transmittance	<i>T</i> e	91.4
Colour		
Visual evaluation		Disregard
Colorimetry (d = 2.0 mm)		
Chromaticity coordinates (colour locus) are referred to the namend Standard Illuminant according to CIE 2°-observer	D 65 X D 65 Y	0.314 0.332
	A <i>x</i> A <i>y</i>	0.448 0.408
		Disregard
General colour rendering index R_a ($d = 2.0 \text{ mm}$)		100

Thermal properties

Viscosities and corresponding temperatures		
Designation	Viscosity $\log\eta$ in dPas	Temperature ϑ in °C
Strain point	14.5	511 (~952 °F)
Annealing point	13	541 (~1006 °F)
Softening point	7.6	724 (~1335 °F)
Forming temperature	6	827 (~1521 °F)
Forming temperature	5	915 (~1679 °F)
Forming temperature	4	1033 (~1891 °F)
Transformation temperature Tg in °C		533 (~991 °F)
Coefficient of thermal expansion $lpha$		
Coefficient of mean linear thermal expansion α in 10-6 K-1 for (static measurement)	the indicated temperature ra	nge
	α(20 °C;300 °C)	9.4
	α (20 °C;200 °C)	9
	α (20 °C;100 °C)	8.2

ϑ= 167 °C	1.15
ϑ = 127 °C	1.08
ϑ= 89 °C	1.01
ϑ = 24.5 °C	0.92
i	
Mean specific heat capacity c_P (20 °C to 100 °C) in J/ (g·K)	
ge is possible.	
nentioned temperature	See annex
α(20 °C;500 °C)	10.3
α (20 °C;450 °C)	10
α (20 °C;400 °C)	9.8
α (20 °C;350 °C)	9.6
α (20 °C;300 °C)	9.4
α(20 °C;250 °C)	9.1
α (20 °C;200 °C)	8.8
α (20 °C;150 °C)	8.4
α(20 °C;100 °C)	7.8
	α (20 °C;150 °C) α (20 °C;200 °C) α (20 °C;250 °C) α (20 °C;350 °C) α (20 °C;350 °C) α (20 °C;450 °C) α (20 °C;450 °C) α (20 °C;500 °C) α (20 °C;500 °C) mentioned temperature ge is possible. θ = 24.5 °C θ = 89 °C

Mechanical properties

Density $ ho$ in g/cm ³	2.55
Stress optical coefficient C in 1.02 · 10.12 m²/N	2.7
Breaking strength	
Admissible value for the bending strength σ_{zul} of technically annealed glasses as calculation basis (air) in N/mm ²	30
A higher mechanical strength can be realized by chemical toughening according to the ion exchant to annex 3.3.1) or by thermal toughening.	nge procedure (refer

+44 (0)1622 859444 info@knightoptical.co.uk www.knightoptical.com KNIGHT OPTICAL

Chemical toughening	
Processing temperature ϑ in °C	420
Processing time t in h	16
Compressive stress Ds as birefringence in nm/cm	7200
Penetration depth Nz up to neutral zone in µm	48
Further information	see annex
Thermal toughening	
Recommended minimum thickness <i>d</i> in mm for toughened safety glass for building purposes according to DIN 1249 T10 - 1990	4
Young's modulus E in kN/mm²	71.5
Poisson's ratio μ	0.22
Torsion modulus G in kN/mm²	29.3
Knoop hardness HK100	542

Chemical properties

Hydrolytic resistance acc. to DIN ISO 719	
Hydrolytic class	HGB 3
Equivalent of alkali (Na ₂ O) per gram of glass grains in μg/g	170
Acid resistance acc. to DIN 12 116	
Acid class	S 2
Half surface weight loss after 6 hours in mg/dm	1.4
Alkali resistance acc. to DIN ISO 695	
Class	A 2
Surface weight loss after 3 hours in mg/dm²	140

Electrical properties

Dielectric constant (Permittivity) ε_r at 1 MHz	7
Dissipation factor tan δ bei 1 MHz	30 · 10-4
Electric volume resistivity $ ho exttt{D}$ in $\Omega \cdot exttt{cm}$ at the specified temperatures	
$ ho$ $_{ m D}$ for alternating current 50 Hz and 3 kHz	
ϑ= 1260 °C	10.2
ϑ= 1386 °C	6.8
ho D for direct current	
ϑ = 250 °C	109
ϑ = 350 °C	1.6 · 107
ϑ= 400 °C	2 · 106
Temperature t k100 in °C for a specific electric volume resistivity of 108 Ω · cm	301

+44 (0)1622 859444 info@knightoptical.co.uk www.knightoptical.com KNIGHT OPTICAL

