

► ABSOLUTE ENCODERS WITH FIELDBUS INTERFACE

EtherNet/IP

► MEM620-BUS

► MEM520-BUS

► MEM450-BUS

▶ ORDERING INFORMATION

TYPE

- [] MEM620B Square flange 63.5x63.5 mm
- MEM540B Round flange Ø 58 mm CLAMPING FLANGE
- [] MEM520B Round flange Ø 58 mm SYNCHRO FLANGE
- [] MEM440B Blind hollow shaft for motor coupling
- [] MEM450B Blind hollow shaft, fixing by elastic support

INTERFACE

V EIP - EtherNet/IP™

NO. OF TURNS

M - Multiturn

SHAFT Ø /HOLLOW SHAFT Ø

- [] 6 mm
- []8 mm
- M 10 mm
- [] 12 mm [] 14 mm
- [] 15 mm

MEM540B-EIP-M-10

ODVA.

CERTIFICATION NO. 11803.01

► MEM540-BUS

Model:

Weight

Intertia

Max load

(10÷2000 Hz)

Shock (11 ms)

Protection degree

Operating temperature

Stocking temperature

Materials: housing / shaft

Shaft/Hollow shaft Ø (mm)

Revolutions/minute

Vibrations resistance

Starting torque

► MECHANICAL & ENVIRONMENTAL SPECIFICATIONS

500 g ca.

 $\leq 0.8 \text{ Ncm}$

 $\leq 25 \text{ g cm}^2$

100 m/sec²

 $-30 \div 70^{\circ}$ C

-30 ÷ 85°C

50 G

80 N axial/100 N radial

IP67 - IP65 shaft side

6, 8,10

6000

520 - 540 - 620 440 - 450

Aluminium / Stainless steel

► MEM440-BUS

▶ ELECTRICAL & OPERATING SPECIFICATIONS

Operating principle	Magnetic
Resolution/revolution	8192 steps/rev – 13 bit
Revolutions no.	65536 - 16 bit
Initializing time	< 1s
Data memory	>20 years
	No motion – power off
Interface	EtherNet/IP TM
Supply	10 ÷ 30 Vdc
	Protection against polarity reversal
Power consumption	2.5 W
Accuracy	± ½ LSB
Connection	2 M12 female connectors D-coding
	+1 M12 male connector
Interference immunity	EN 61000-6-2
Emitted interference	EN61000-6-4

Operating principle	Magnetic
Resolution/revolution	8192 steps/rev – 13 bit
Revolutions no.	65536 - 16 bit
Initializing time	< 1s
Data memory	>20 years
	No motion – power off
Interface	EtherNet/IP TM
Supply	10 ÷ 30 Vdc
	Protection against polarity reversal
Power consumption	2.5 W
Accuracy	± ½ LSB
Connection	2 M12 female connectors D-coding
	+1 M12 male connector
Interference immunity	EN 61000-6-2
Emitted interference	EN61000-6-4

► MEM-BUS EtherNet/IP™ ENCODER PROFILE

▶ ETHERNET/IP™ COMMUNICATION PROTOCOL

EtherNet/IPTM networks can effectively integrate multivendor

MEM-BUS Ether Net / IP™ encoders offer:

• IP addressing via hardware and software

 Position, speed and alarms comprehensive data managed by assembly object 110

• Synchronous Real Time transmission

 Parameter entering via TCP/IP • Encoder status diagnostic

al communication protocols worldwide.

• High resolution (29 bit)

• DLR (Device Level Ring)

Based on the industrial Ethernet communication protocol, **EtherNet/IP™**

interface allows a steady, flexible and fast communication between

control systems and peripheral devices (such as sensors and actuators).

multi-protocol devices to create articulated remote-controlled production

systems, a pecularity which makes it one of the most widespread industri-

- Ref IEC61784-1
- Device profile: CIPTM Protocol, encoder profile 22H
- Physical layer: EtherNet/IP® 100Base-TX, Fast Ethernet, ISO/IEC 8802-3
- Output code: Binary
- Cycle time ≥ 1 ms
- Transmission rate: 100 Mbit/s
- Transmission: Cable CAT-5, shielded (STP), ISO/IEC 11801
- CIP SYNC™ protocol complying with standard IEEE-1588

► SETTABLE PARAMETERS VIA TCP/IP

- Steps/revolution
- Revolutions number
- Preset
- Rotation direction

Pin Signal

• Speed unit:steps/s, steps/ms,

Position and speed alarm

rev./min.

thresholds

Tx + 2 Rx + 3 Tx -Rx -

▶ CONNECTIONS

Connector (port 1 and 2)

D code female M12 connector

SUPPLY CONNECTOR

A code male M12 connector

Pin	Signal	
1	+V supply (10 - 30 Vdc)	
2	N.C.	
3	GND (0V)	
4	N.C.	

▶ PROGRAMMING & OPERATION

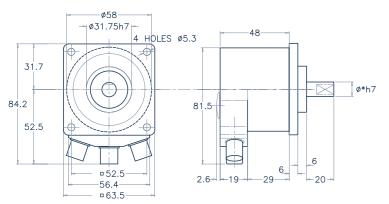
8, 10, 12, 14, 15

Parameters are entered via software via TCP/IP. Besides standard Assembly Objects 1, 2 and 3, the encoder supports the proprietory object 110, allowing a comprehensive view of parameters and alarms relating to speed and position.

- Object 1 It provides the factorized absolute position
- Object 2 It provides the factorized absolute position + warnigs and allarms
- Object 3 It provides the factorized absolute position + 32 bit instant speed
- Object 110 It provides the factorized absolute position + 32 bit instant speed + position state record + speed and position warnings

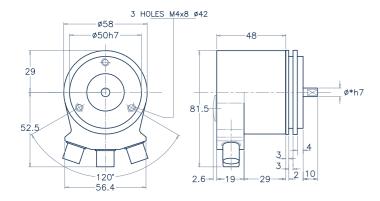
The speed measuring unit (step/s, step/ms, RPM), selected in the starting parameter entering phase, can be modified run-time

IP addressing can be entered both by rotary switches and via software (DHCP/B00TP)

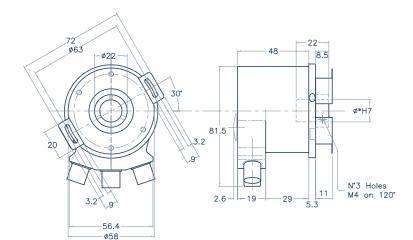

The function **DLR Device Level Ring** ensures operation even in case of errors or net interruptions.

CIP SyncTM provides the increased control coordination needed for control applications where absolute time synchronization is important to achieve real-time synchronization between distributed intelligent devices and systems.

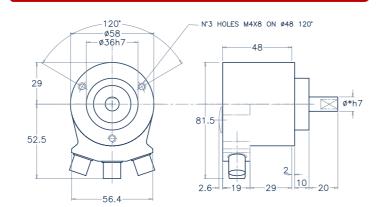
* Elap reserves the right to upgrade the product without notice


► MEM620-BUS ETHERNET/IP™

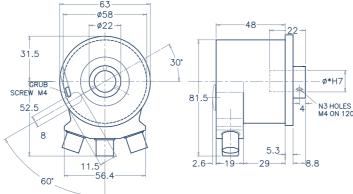
► MEM540-BUS ETHERNET/IP™


- * AVAILABLE SHAFT DIAMETERS
- 8 10 length 20mm 6 length 10mm

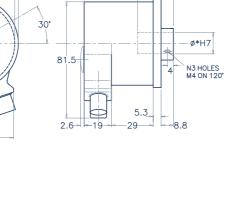
- * AVAILABLE SHAFT DIAMETERS
- 8 10 length 20mm 6 length 10mm


► MEM450-BUS ETHERNET/IP™

* AVAILABLE HOLE DIAMETERS 8mm-10mm-12mm-14mm-15mm


ELAP srl

Via Vittorio Veneto, 4 - 20094 Corsico (Mi) tel. +39 02 451.95.61 - fax +39 02 45.10.34.06 info@elap.it - www.elap.it



- 8 10 length 20mm 6 length 10mm

► MEM440-BUS ETHERNET/IP™

* AVAILABLE HOLES DIAMETER 8 - 10 - 12 - 14 - 15mm



ABSOLUTE ENCODER WITH FIELDBUS INTERFACE

