3D-MICROMAC AG

Germany

Factory icon Manufacturer/ Producer

3D-MICROMAC AG
Web icon
31 Products

Germany

3DMicromac‘s microSHAPE™ laser system is designed for the processing of large and flat substrates with high accuracy. The highly versatile system allows the combination of different laser processes in a single machine. In addition, it is capable of processing with multiple working heads – this parallel processing makes higher throughputs achievable. microSHAPE™ is an industry proven solution for all kinds of ablative and non-ablative processes. These include cutting, selective removal of thin films, and structuring processes like engraving and marking. The microSHAPE™ system is suitable for machining a variety of materials, e.g. glass, metals, polymer, ceramics, display stacks, and coated substrates. Free form cutting with extraordinary quality Damage free cutting edges Contactless processing enables minimal cost of ownership Cutting speed up to 1.5 m/sec Laser sources according to customer requirements Up to 3 independent beam paths

Request for a quote

Germany

3DMicromac‘s microPRO™ is an adaptable laser micromachining system mainly used in industrial production. Its high versatility makes the system perfectly suited for industrial laser micromachining tasks such as laser structuring, cutting, and drilling applications. Furthermore, it is suitable for a variety of materials, e.g., metals, alloys, transparent and biological substrates, ceramics, and thin film compound systems. The microPRO™ is available with an automatic handling system for wafers, cassettes, trays, etc The microPRO™ enables the laser processing of various substrates. Due to the integration of different technology modules, the platform can be adapted to customers’ requirements. Configuration packages may include High speed cutting Drilling Engraving Structuring and modification Laser Lift Off (LLO) Cylindrical machining Customized solutions

Request for a quote

Germany

3DMicromac‘s highly versatile microFLEX™ product family is the all-in-one solution for manufacturing flexible thin films in photovoltaics, electronics, medical devices, displays, and semiconductors. The production systems can handle various substrates, material thicknesses, and types such as polymer films, stainless steel, and thin glass. The microFLEX™ systems combine high precision laser processing with cleaning and packaging technologies, as well as inline quality control. Due to its modular concept, various customized solutions are available, reaching from industrial mass production to pilot lines as well as applied research. High throughput and efficiency on-the-fly processing; high machine uptime; multiple tension controllers; contactless substrate guiding Highest flexibility easy machine layout modification by modular concept Cost advantages Long term security of investment; reasonable cost of ownership; easy to upgrade and modify; different micro environments.

Request for a quote

Germany

The microPRO™ XS system provides laser annealing with high repeatability and throughput in a versatile system. Combining a state-of-the-art laser optic module with 3DMicromac’s modular processing platform, the microPRO XS is ideally suited for ohmic contact formation (OCF) in silicon carbide (SiC) power devices. The microPRO™ XS for OCF features a UV wavelength diode pumped solid-state (DPSS) laser source with nanosecond pulses and spot scanning to process the entire metalized backside of SiC wafers. It forms ohmic interfaces and cures grinding defects, while preventing the generation of large carbon clusters and heat related damage to the frontside of the wafer. Best in class cost per wafer High throughput – 150mm wafers can be processed in a single step Flexible recipe programming and wide parameter range.

Request for a quote

Germany

The microVEGA™ xMR system provides high throughput laser annealing for monolithic magnetic sensor formation. A highly flexible tool configuration, the microVEGA™ xMR can accommodate both Giant Magnetoresistance (GMR) and Tunnel Magnetoresistance (TMR) sensors, as well as easily adjust magnetic orientation, sensor position and sensor dimension—making it an ideal solution for magnetic sensor production. The microVEGA™ xMR uses on-the-fly spot and variable laser energy to provide selective heating of the pinning layer in each sensor in order to “imprint” the intended magnetic orientation. Magnetic field strength and orientation is adjustable by recipe, while high temperature gradients ensure low thermal impact. This allows sensors to be processed directly next to readout electronics as well as closer together, and enables the production of smaller sensors—freeing up space for processing more devices per wafer.

Request for a quote

Germany

The microPREP™ PRO system was developed to provide efficient laser sample preparation fitted to the needs of microstructure diagnostics and failure diagnostics. Therefore, with microPREP™ PRO material samples can be prepared effectively and economically by using an ultrashort pulse laser. microPREP™ PRO allows to create complex and 3D-shaped samples to enable more comprehensive analysis of certain structures like in advanced packages, such as through silicon vias (TSVs), or even complete systemsinpackage (SiP). Furthermore, it is ideal to provide larger sized samples with microlevel precision. The integrated overview camera assists in navigating on larger samples – the high definition process camera allows for exact positioning. Moreover, the application of a picosecond laser ensures virtually no structural damage and no elemental contamination of the material.

Request for a quote

Germany

The advanced microCELL™ MCS laser cutting system has been developed to meet the photovoltaic (PV) market’s demands for boosting module power output and service life by minimizing power losses and providing for an exceptionally high mechanical strength of cut cells. It enables the highest throughputs for cutting cell sizes up to M12/G12 into half cells or shingled cells. The microCELL™ MCS system takes advantage of 3DMicromac’s patented thermal laser separation (TLS) process for cell separation. The ablation free technique guarantees an excellent edge quality. The microCELL™ MCS system offers half and shingled cell cutting for improved module performance. The TLS Technology™ has gained importance in contrast to conventional separation techniques due to smooth and defect free cutting edges. This leads to a significantly higher module power gain and less module power degradation.

Request for a quote

Germany

The microDICE™ laser micromachining system leverages TLSDicing™ (thermal laser separation) – a unique technology that uses thermally induced mechanical forces to separate brittle semiconductor materials, such as silicon (Si), silicon carbide (SiC), germanium (Ge) and gallium arsenide (GaAs), into dies with outstanding edge quality while increasing manufacturing yield and throughput. Compared to traditional separation technologies, such as saw dicing and laser ablation, TLS Dicing™ enables a clean process, microcrack free edges, and higher resulting bending strength. Capable of dicing speeds up to 300mm per second, the microDICE™ system provides up to a 10X increase in process throughput compared to traditional dicing systems. Its high throughput, outstanding edge quality and 300mm wafer capable platform enables a true high volume production process, especially for SiC based devices.

Request for a quote

Germany

3DMicromac‘s microMARK™ MCL is a compact and maintenance free DPSS laser system to meet customer’s demand for high quality laser engraving with significantly decreased cost of ownership. The system is utilized for visible, invisible as well as for technical engravings of all kind of spectacle lenses as well as marking of hard and soft contact lenses. The use of a UV DPSS laser source achieves a high quality marking result comparable to excimer laser engravings. High quality laser engraving Accurate contrast adjustment Low investment and operating costs Maintenance free laser source Plug-and-play replacement of main components directly by the customer High quality engraving with accurate contrast adjustment on a variety of spectacle lenses and coatings

Request for a quote

Germany

3DMicromac‘s microCELL™ OTF meets cell manufacturers‘ demands for increasing the efficiency of PERC solar cells, by precise surface structuring, low operating costs and highest availability. The system is suitable to process mono and polycrystalline silicon solar cells. Laser processing on-the-fly and an innovative handling concept enable maximum throughput and yield in the mass production of crystalline solar cells. The contactless cell handling enables processing without surface defects or microcracks. On-the-fly laser processing with unbeatable cost benefit ratio Contactless wafer handling High throughput and efficiency (> 3.800 wph) Low cost of ownership and CAPEX Upgrade for existing production lines or expansion

Request for a quote

Domain icon Manufacturer/ Producer

3D-MICROMAC AG

Technologie-Campus 8

09126 Chemnitz - Germany

VAT No.
Contact
Office Building Outline icon
A page for your business
Can you see this? Your potential clients will too. Join us now so you too can be visible on europages

Request for quotes

Create one request and get multiple quotes form verified suppliers.

  • Only relevant suppliers
  • Data privacy compliant
  • 100% free